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Abstract– Let’s say that we have a ship, like the Titanic, that 

has sunk, or more recently the Costa Concordia and survivors 

and remains are found. However, there are still a few hundred 

people missing, and we would like to know whether they are likely 

to have survived in order to focus rescue efforts to those areas, as 

time is of the essence.  

In order to solve this problem, which is an interpretation of 

the famous Titanic Kaggle Challenge with real-world applications 

as mentioned above, our project is aimed to develop a predictive 

model for which passengers would survive the Titanic disaster 

using passenger data[1]. We used Logistic Regression, Random 

Forests, Support Vector Machines, k-nearest neighbours, and k-

means to attempt to capture linear and complex dependencies in 

the data and find the most accurate solution in order to survey 

which model would work best in these types of situations. 

I. INTRODUCTION 

 
From the Kaggle problem, our task is to predict which 

passengers will survive based on binary classification from 
feeding the selected model. Our research goal right now is to 
compare and pick the best algorithm for predicting survivors 
and casualties out of the various machine learning methods laid 
out in the Abstract. 

We eventually concluded that the Random Forests model 
achieved the highest predictive accuracy on the testing data, 
outperforming the Logistic Regression, SVM, both k-NN 
models, and k-Means. A surprise was that k-NN in both tested 
forms performed exceptionally at 82.12%, beating SVM while 
being simple to implement. 

Realistically, our results and methods would not have much 
of an impact as this Kaggle Challenge has been pushed to its 
absolute limits and has significantly better solutions than ours 
for this challenge, like Bhardwaj’s method using the random 
forest model, with isolated labels which scored within the top 
9%[2].  

However, as a rule of thumb the more a model can classify 
one thing i.e. the Titanic better, the more overfitted the model 
is and the less likely it would be useful in another disaster, say, 
if we applied that to the Costa Concordia or some other ship 
disaster, the model would perform poorly as the training is 
overfit. Overfitting is described in more detail on the last slide 
of Lecture 3 Regression in this course[3]. 

Our solutions this paper could potentially be more 
generalizable than these specialized high percentages if trained 

on more relevant data pertaining to modern ship disasters. They 
can possibly be useful in the near future’s maritime accidents. 

II. BACKGROUND AND RELATED WORK 

As mentioned in previous sections, this is a Kaggle 
Challenge with over 60000 submissions[1], but in the real 
world, the closest thing to this scenario would be human 
casualty prediction. A paper on casualty prediction using a two-
step machine learning method utilizes a very similar process to 
ours, Data Preprocessing, then feeding it into the Machine 
Learning model[4]. Their dataset is from various terrorist 
attacks which have large amounts of lives lost[4, pp.244-245]. 

In their particular case, they do “(1) label defining; (2) 
feature selection; (3) missing data processing; and (4) feature 
processing”[4, p.244] for preprocessing before utilizing a set of 
machine learning models “the support vector machine (SVM), 
random forest (RF), gradient boosting decision tree (GBDT) 
and XGBoost models”[4, p.244] alongside 10-fold cross-
validation [4, p.244]. 

Hu, Hu, & Hou’s paper is near identical to our approach 
except for k-NN without cross-validation, where we do data 
preprocessing by paring it down and utilize 5-fold cross-
validation. They do this to predict deaths from terrorist 
attacks[4] conversely we are here to figure out . 

 

Figure 1. Hu, Hu, Hou’s model for their approach for casualty 

prediction 

Another related work is Fang et al.’s Earthquake casualty 
prediction where they use a shallow neural network to predict 
earthquake casualty numbers[5]. Their process is feeding data 
of the buildings that collapsed to determine the number of 
deaths by training it on past earthquakes[5, pp.2-4] into their 
shallow neural net to determine deaths and plot a rescue plan[5]. 

This approach is similar to ours, as Fang et al. also 
preprocesses data, e.g. magnitude, deaths, city, and year and 
feeds it to their model which calculates the deaths and people 
buried alive, and then they do some additional processing to get 
the rescue plan which is not relevant to our particular approach. 



   

 

   

 

With those two related examples, we can safely conclude 
that our proposed methodologies in the introduction are on the 
right track. 

III. METHOD 

A. Research objectives 

Hypothesis: Analytically, we should be able to determine 
that out of the models, the best to predict passenger survival and 
death. The more complex models, i.e. SVM or Random Forests, 
should yield a more accurate result, while the simpler models 
like k-NN should yield a significantly less precise result for 
classifying the passenger’s survival. 

We have two objectives. 

1. O1 Train the selected models SVM, Random Forest, 
etc., on our preprocessed Titanic Kaggle dataset in 
order to determine the best model to predict survivors 
for maritime accidents. 

2. O2 Compare the real-world ramifications of this 
model against all other models, whether they overfit 
or are generalizable. 

B. Research Methodology 

In data preprocessing, we extracted punctuation from the 
Name column so that we were left with only the words. Then 
we extracted the titles from each person like ‘Mr’, ‘Mrs’, 
‘Miss’, ‘Dr’ and labelled them in a new column, the rationale 
being that the ML models may be able to pick up differences in 
outcomes between married women and unmarried women, or 
that doctors had higher survival rates due to their medical 
experience. We also label the sex column to be either 0 for 
women or 1 for men. We separated the ticket field into the ticket 
number and ticket prefix. We provided a new column that 
standardized the fare. Our ‘y’ or classification label ‘Survived’ 
was provided in either 0 or 1 from the dataset, so no need for 
preprocessing. 

We extracted the correlations between survival and other 
variables from the correlation matrix and found that survival is 
heavily correlated to fare price as seen in figure 2. 

 
Figure 2. feature correlations extracted from feature matrix 

In our dataset we have 549 who perished and 342 who 

survived, so if our model only predicted perished, it would be 

correct 62% of the time. This was our first baseline to test our 

models against. 

 

 

 
Figure 1. Survived vs Perished 

Below we plot Fare, Pclass and Age colored by survival. 

 

 
Figure 3. Fare vs Pclass vs Age 

From the plot, we observe that higher class (lower Pclass 
value) and youth correlate with survival. 

Next, we plot the Fare, Age, and SibSp (# of family 
members on Titanic “Sibling/Spouse”). 

 

 
Figure 4. Fare vs Age vs SibSp 



   

 

   

 

Being younger has a higher correlation with survival, as 
does having fewer family members (SibSp).  

Finally, we plot Pclass, Age, and Sex. 

  
Figure 5. Pclass vs Age vs Sex 

Gender (Sex) is highly correlated with survival, with the 
men (1) having fewer survivors than the women (0). 

 

C. Logistic Regression 

Since we are trying to do binary classification into ‘y’ the 
survival rate, we are interested in which features have more 
significant impacts on surviving. We implemented a logistic 
model with backwards feature selection, achieving an accuracy 
of 72% (0.72). Keeping half of the features left us with the most 
important ones: ‘Pclass’ with coefficient -0.98, ‘Sex’ with -
2.86, ‘SibSp’ with -0.27, ‘Parch’ with -0.31 and ‘Embarked’ 
with 0.2. The calculated logarithmic probability from the 
Logistic model are defined mathematically as: 

log (

1

1 +  𝑒−(𝐵0+ 𝐵1𝑃𝑐𝑙𝑎𝑠𝑠+ 𝐵2𝑆𝑒𝑥+ 𝐵3𝑆𝑖𝑏𝑆𝑝+⋯ )

1 − 
1

1 + 𝑒−(𝐵0+ 𝐵1𝑃𝑐𝑙𝑎𝑠𝑠+ 𝐵2𝑆𝑒𝑥+ 𝐵3𝑆𝑖𝑏𝑆𝑝+⋯ )

) = 𝑧

=  (𝐵0+ 𝐵1𝑃𝑐𝑙𝑎𝑠𝑠+ 𝐵2𝑆𝑒𝑥+ 𝐵3𝑆𝑖𝑏𝑆𝑝 + ⋯ ) 

 
The coefficient for Sex indicates that female passengers 

(value 0) have higher probability of surviving. Similarly with 
which class the passenger is, the closer to 0 (First class), the 
higher the number will be, and the higher the probability of 
survival, but the higher the Pclass variable (lower class in 
english semantics) is, say 2, (Third class), the more negative the 
number will be, indicating a lower probability of survival. 

D. Random Forests 

Random forests are a model consisting of multiple decision 
trees that are built to prevent overfitting by having more trees 
so that they are more generalizable[6]. 

It handles regression and classification well[6], and according 

to IBM, “Feature bagging also makes the random forest 

classifier an effective tool for estimating missing values as it 

maintains accuracy when a portion of the data is missing.”[6] 

 

From IBM’s website, the reason why this model is good for 

classifying survivors is  

Easy to determine feature importance: Random forest 

makes it easy to evaluate variable importance, or 

contribution, to the model[6].  

This is essential as we want to see which elements are 

important. 
Overall, Random forests seem to be a good fit for our 

dataset as we want a model that predicts well and does not 
overfit, as overfitting is a massive problem that causes 
inaccuracies with new data. 

To implement it we train a random forest classifier on the 
data. We used a grid search to tune the hyperparameters to the 
optimal values, varying the number of estimators, the maximum 
depth of the trees, the minimum number of samples required to 
split a node, and the minimum number of the samples needed 
to be at a leaf node to find the optimal random forest 
configuration. 

E. SVM 

Support Vector Machine models looked to be good 
candidates for our problem because they can handle complex, 
non-linear relationships between features and offer good 
generalization through margin maximization and 
regularization. 

 
Figure 6. Age vs Fare and Survivability Plot 

The relationship between Fare, Age and Survivability is 

graphed below. As we can see, there is not a linear separation 

between the two groups of points with respect to survivability. 

 
Figure 7. Age vs Family Size and Survivability Plot 



   

 

   

 

Similarly, we have the relationship between Age, Family Size 

and Survivability below, no linear separability is evident. 

 

 
Figure 7. Age vs Pclass and Survivability Plot 

We tried fitting a Support Vector Machine model to the 
data. We did a search through 50 random groupings of 
hyperparameters and used 5-fold cross validation to evaluate 
each parameter combination. We used kernel functions Radial 
Basis, Polynomial, and Sigmoid.  

 

Our training process identified the best-performing 

hyperparameters as a polynomial kernel with a degree of 2, 

gamma = 0.1, coef0 = 1, and C = 10. We achieved an accuracy 

of 0.82. The mathematical equation for our kernel is shown 

below. 

 

𝐾(𝑥, 𝑥′) = (0.1𝑥𝑇𝑥′ + 1)2 

 

This function computes a non-linear similarity between each 

pair of input vectors x and 𝑥′ , allowing the model to learn 

quadratic decision boundaries. These kernel values are then 

used in the SVM's decision function: 

 

𝑓(𝑥) =  ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑖

+ 𝑏 

Where: 

• 𝛼𝑖 − 𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 

• 𝑦𝑖 − 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

• 𝑥𝑖 − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

• 𝑏 − 𝑏𝑖𝑎𝑠 𝑡𝑒𝑟𝑚 

 

The sign of f(x) determines the prediction: if f(x) > 0, we 

predict class 1 (survived); otherwise, class 0 (did not survive). 

 

F. k-NN 

We also explored a k-Nearest Neighbors (k-NN) approach due 

to its ability to model non-linear decision boundaries without 

making assumptions about the data distribution. In this context, 

the model predicts a passenger's survival based on the survival 

outcomes of their most similar neighbors in the feature space. 

k-NN is particularly intuitive for this dataset, as passengers 

with similar characteristics (e.g., class, age, family size) are 

often likely to have similar outcomes. 

 

The age and fare features were standardized to prevent 

differences in magnitude between their values and other 

features to skew the algorithm. The Pclass, SibSp, and Parch 

features were also standardized because their values have order 

to them and thus can be represented as distances, for example 

a Pclass of 1 and Pclass of 3 should be further apart in distance 

than a Pclass of 1 and 2. 

 

A grid search was performed over three hyperparameters on 

number of neighbors, weights, and distance calculation. The 

number of neighbors was varied from 1 to 21, the weights were 

either uniform or distance, and the distance calculation was 

either Manhattan or Euclidean.  

 

As k-Nearest Neighbors (k-NN) is known for its simplicity, we 

also explored a non-cross-validated implementation to assess 

how its performance compares to our cross-validated model. 

In this version, we still normalized the test data to ensure 

consistent distance calculations and prevent skew from feature 

scale differences, and utilized Euclidian distance. 

G. Unsupervised Learning: K-means Clustering 

While our primary goal was to use supervised models to 

predict survival, we also explored an unsupervised approach 

using K-Means clustering to identify natural groupings in the 

Titanic dataset without using the target variable (Survived). 

Our goal was to see if the unsupervised clusters would align 

meaningfully with actual survival outcomes. 

 

Mathematical Rationale for K-means Clustering 

K-Means clustering is an unsupervised learning algorithm that 

partitions the data into clusters by minimizing intra-cluster 

variance. The method attempts to find groupings of passengers 

who are similar based on features such as age, fare, class, and 

family size. 

The objective function for K-Means can be defined as: 

𝑱 =  ∑ ∑ ||𝒙𝒊 − 𝝁𝒋||𝟐

𝒙∈𝑪𝒋

𝒌

𝒋=𝟏
 

Where: 

• k is the number of clusters 

• 𝐶𝑗is the set of data points assigned to cluster j 

• 𝜇𝑗 is the mean(centroid) of cluster j 

• ||𝑥𝑖 − 𝜇𝑗||2is the squared Euclidean distance between 

a data point and its assigned cluster center 

The algorithm runs in two main steps: 

1. Assignment step – Each data point is assigned to the 

nearest cluster centroid. 

2. Update step – Each centroid is updated to be the mean 

of the points in its cluster. 

These steps are repeated until the algorithm converges (i.e., 

cluster assignments no longer change significantly or the cost 

function improvement plateaus). 

This approach is well-suited to our dataset for a few key 

reasons: 

• It helps us explore latent structure in the feature space, 

revealing how passengers may naturally group 

together based on shared traits. 



   

 

   

 

• It is computationally efficient, making it practical for 

iterative experimentation across different values of k. 

• It aligns well with our interest in visualization – using 

PCA to project the clusters into two dimensions 

allows us to inspect the separation visually. 

That said, a limitation is that K-Means assumes that clusters 

are spherical and roughly equal in size, which may not always 

reflect real-world distributions. Still, it provides a simple and 

interpretable way to explore structure in the data, and it gives 

us a baseline to compare how well natural clusters align with 

actual survival outcomes. 

 

We first applied Principal Component Analysis (PCA) to 

reduce the dimensionality of the feature space for 

visualization. The initial clustering was done with k=2, aiming 

to roughly separate the passengers into two groups. 

 

Clusters were relatively well-separated in the PCA space. To 

evaluate how well these clusters aligned with actual survival, 

we compared them using a confusion matrix. This yielded 

moderate alignment, with 440 actual non-survivors and 173 

actual survivors correctly grouped. 

 

Formulas 

For each model we will be displaying these statistics to gauge 

its effectiveness. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score = 2 ∗
Precision ∗ Recall

Precision + Recall
 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

 

 

 

IV. RESULTS 

A. Logistic Regression 

Below we have a statistical summary table for our model 

coefficients: 

 

 B p Exp(B) 

Const 3.723 5.226e-23 41.392 

Pclass -1.016 1.020e-15 0.362 

Sex -3.030 2.577e-38 0.048 

SibSp -0.295 1.399e-02 0.744 

Parch -0.156 2.324e-01 0.855 

Embarked 0.204 2.196e-01 1.226 
Table 1. Logistic Regression Statistical Summary Table 

After running it through the logistic regression model, we have 

a B value of 3.723 for our intercept term; this means if all 

features are at 0 (female, first class, no children or parents, 

embarked from port S), the odds of survival would be approx. 

97.6% (0.976). We infer from the dataset that mothers would 

be motivated to save their children, first-class passengers have 

priority, females have priority, etc. The P values for Pclass and 

Sex are especially small. This indicates there is virtually no 

chance that their effects on the outcome happened randomly. 

For the Exp(B) column, we have a value of 0.744 for the SibSp 

feature. This means that having more family members on the 

Titanic would reduce your chance of survival by 25.6% (0.256) 

 

 
Figure 9. Logistic Regression Confusion Matrix 

The logistic regression model assumes a linear relationship 

between the features and the logarithmic odds of survival. But 

in our dataset, the relationship between fare and survival may 

not be linear, with jumps between first and lower class fares. 

The relationship between age and survival may also not be 

linear, with children being prioritized over all other age groups. 

Logistic regression also does not handle interactions between 

features, and is not robust to outliers since it tries to find a best 

linear boundary. For these reasons, we do not think this is the 

best model. 

 

B. Random Forests 

 
Figure 10. Random Forests Confusion Matrix 



   

 

   

 

 
Figure 11. Random Forests ROC Curve Plot 

We achieved an accuracy of 0.82 and a mean cross-validation 

accuracy of 0.84 with the random forest model. Our summary 

statistics are below. 

 

Survival precision recall F1-score Support 

0 0.87 0.82 0.84 102 

1 0.75 0.81 0.78 76 

Accuracy: 0.82  Total S: 178 
Table 2. Random Forests Statistical Summary Table 

The model had slightly better performance predicting those 

who perished (recall = 0.82) versus those who survived (recall 

= 0.81), this is to be expected since our classes are slightly 

unbalanced, with more perishing than surviving. The F1-scores 

0.85 and 0.78 for classes 0 and 1 respectively indicate the 

model performs decently across both classes. The confusion 

matrix is below. 

We obtained an AUC of 0.87, which indicates that the model 

can distinguish between survivors and non-survivors with 87% 

accuracy across all possible classification thresholds. We have 

a steep jump as we move from left to right across the graph, 

meaning that we can predict people who perished without 

predicting people perishing falsely. The most important 

features are below. 

 
Figure 12. Random Forests Feature Importance Plot (Top 6) 

From this graph, the most important features were Sex, 

Ticket_number, Title_encoded, Age, Fare_Standardized, and 

Fare. This indicates that when the Random Forest model split 

the data based on these features — particularly Sex — it 

achieved the greatest improvements in node purity, meaning 

these features were the most helpful in separating survivors 

from non-survivors. While Sex contributed the most, the other 

top features also played significant roles, though to a lesser 

degree. These results largely align with the findings from our 

logistic regression model, especially when we consider the 

conceptual overlap between Pclass and Fare, and between Sex 

and Title_encoded. 

 

While the Random Forest model performed well, we wanted 

to try for a better performing classifier.  

 

C. SVM 

Using a polynomial kernel of degree 2 allows the model to 

learn quadratic decision boundaries, capturing non-linear 

relationships between features. The regularization parameter C 

= 10 strikes a balance between fitting the training data well and 

avoiding overfitting. This setting encourages the model to form 

a confident decision boundary while still generalizing to 

unseen data. The gamma value of 0.1 provides a moderate level 

of curvature in the decision surface — not too sharp and not 

too smooth — helping the model capture meaningful patterns 

without overfitting noise. 

 

 
Figure 13. SVM ROC Curve Plot

 

Figure 14. SVM Confusion Matrix 

We achieve an ROC curve comparable to the Random Forests 

model. Our statistical summary table is below. 

 



   

 

   

 

Survival Precision Recall F1-score Samples 

0 0.90 0.81 0.85 105 

1 0.70 0.83 0.76 74 

Accuracy: 0.82  Total S: 179 
Table 3. SVM Statistical Summary Table 

The model had better performance predicting those who did 

not survive (precision = 0.90) compared to those who did 

survive (precision = 0.70). This is expected, as the dataset is 

slightly imbalanced, with more passengers perishing than 

surviving. The F1-scores of 0.85 for class 0 and 0.76 for class 

1 indicate that the model performs reasonably well across both 

classes, though with slightly stronger performance for 

predicting non-survivors.  

 

D. k-NN with Cross Validation 

Our best model used 15 neighbors, uniform distance weights, 

with a Manhattan distance calculation, giving us a mean cross 

validation accuracy of 0.814.  

 

 
Figure 15. k-NN Confusion Matrix 

 
Figure 16. k-NN ROC Curve 

In the bottom left of our ROC curve, we start with a high 

threshold for predicting survival, and we thus have very few 

true positives. As we move to the right the threshold is 

lowered to predict survival, points that have fewer and fewer 

neighbors who survived are allowed to be predicted as 

positive. The relatively steep jump is indicative of the success 

of our model in predicting true positives without admitting 

many false positives. The statistical summary table is below: 

 

Survival precision recall F1-score Samples 

0 0.90 0.82 0.85 105 

1 0.71 0.83 0.77 74 

Accuracy: 0.82  Total S: 179 
Table 4. k-NN Statistical Summary Table 

E. k-NN No Cross Validation 

We implemented this version using PyTorch, utilizing GPU 

acceleration to improve computational speed. After 

computing the Euclidean distance between each test point and 

every other normalized training point, we used the topk 

function to retrieve the k nearest neighbors. Through 

experimentation with values of k from 1 to 13, we observed 

that k = 3 produced the best result. 

 
Figure 17. k-NN non cross validated confusion matrix 

 

Despite the lack of cross-validation, the model is still almost 

on par with k-NN cross validated. It produced slightly more 

false positives (2 additional) and fewer false negatives (2 

fewer) compared to the cross-validated k-NN 
implementation. This result suggests that while cross-

validation offers marginal gains in reducing false positives, 

the overall predictive performance remains similar. 

 



   

 

   

 

Figure 18. k-NN non cross validated ROC curve 

 

The ROC curve for this non-cross-validated model reveals 

two near-linear segments. The initial steep segment on the left 

indicates the model’s strength in minimizing false negatives, 

which is particularly desirable in a survival prediction 

context. Ideally, a perfect classifier would generate an ROC 

curve consisting of a vertical line from (0,0) to (0,1), 

followed by a horizontal line to (1,1). 

 

The only thing of note is that the AUC for the non cross 

validated one is lower than the cross validated one, however 

this does not seem to affect the performance as much. 

 

Here is the statistical summary table for the non-cross 

validated k-NN: 

Survival Precision Recall F1-score Samples 

0 0.88 0.83 0.84 105 

1 0.74 0.81 0.77 74 

Accuracy: 0.82  Total S: 179 
Table 5 k-NN non cross validated Statistic Summary table 

 

 

As with the cross-validated k-NN model, the non-cross 

validated version is better at deciding survivals over deaths. 

Nevertheless, it achieved an impressive accuracy of 82.12%, 

comparable to that of the SVM model and virtually identical 

to the cross-validated k-NN implementation. This 

demonstrates that even without advanced techniques, a basic 

k-NN model remains a remarkably strong baseline in this 

classification problem.  

F. Unsupervised Learning: k-Means Clustering 

PCA Projection and Initial Clustering (k=2) 

We first applied Principal Component Analysis (PCA) to 

reduce the dimensionality of the feature space for 

visualization. The initial clustering was done with k=2, 

aiming to roughly separate the passengers into two groups. 

Clusters were relatively well-separated in the PCA space. To 

evaluate how well these clusters aligned with actual survival, 

we compared them using a confusion matrix. This yielded 

moderate alignment, with 440 actual non-survivors and 173 

actual survivors correctly grouped. 

 

 

Figure 19: PCA projection of Titanic passenger data clustered using 

K-Means (k=2). 

 

 
Figure 20: Confusion matrix comparing K-Means clustering results 

(k=2) with actual survival labels. 

Choosing the Optimal Number of Clusters 

We used the Elbow Method to find the optimal number of 

clusters by plotting distortion score vs. number of clusters. 

The "elbow" appears at k=3, suggesting that 3 clusters may 

provide better structure without overfitting. 

 

 
Figure 21: Elbow plot showing distortion score versus number of 

clusters (k) for K-Means clustering. 

K=3 Clustering Results 

With k=3, we observed more detailed groupings. The clusters 

began capturing different types of passengers (e.g., maybe 

based on class or age), but alignment with actual survival 

decreased slightly compared to k=2. 

 



   

 

   

 

 

 
Figure 22: PCA projection of Titanic passenger data clustered using 

K-Means with k=3. 

 

 
Figure 23: Confusion matrix comparing K-Means clustering results 

(k=3) with actual survival labels. 

K=4 Clustering Results 

Testing with k=4, we obtained even finer groupings. With 

more clusters, there was greater granularity, but 

interpretability and survival alignment did not clearly 

improve. 

 

 
Figure 24: PCA projection of Titanic passenger data clustered using 

K-Means with k=4. 

 

 
Figure 25: Confusion matrix comparing K-Means clustering results 

(k=4) with actual survival labels. 

Interpretation and Insights 

• Clustering generally grouped passengers based on 

similar demographic and ticket/fare characteristics, 

as seen in PCA plots. 

• The clusters partially aligned with survival, but not 

as strongly as supervised models. For instance, in the 

k=2 setup, many actual survivors were placed in the 

wrong cluster. 

• k=2 or 3 offers the most interpretable unsupervised 

grouping. Beyond that, clusters become hard to 

associate with survival outcome. 

Here is our statistical summary table 

 Precision Recall F-1 k Samples Accuracy 

0 0.81 0.72 0.76 2 608 0.69 

1 0.51 0.62 0.56 2 279 0.69 

0 0.74 0.65 0.63 3 552/608 0.62 

1 0.39 0.49 0.37 3 227/279 0.56 

0 0.54 0.57 0.39 4 429/608 0.51 

1 0.63 0.58 0.58 4 266/279 0.66 
Table 6 k-Means statistical summary table 

Note: for k > 2 values are scaled based on how many are 

missing from samples in wrong classes. 



   

 

   

 

V. CONCLUSION 

 

 In this project, we explored a range of supervised learning 

models to predict passenger survival on the Titanic, including 

Logistic Regression, Random Forests, Support Vector 

Machines, and k-Nearest Neighbors (k-NN), as well as 

experimented with using k-Means. Our objective was not only 

to achieve predictive accuracy but also to understand how 

different features contributed to survival outcomes. 

 

The most performant machine learning model observed was 

the k-NN with cross-validation with an AUC of 0.92, which 

means that it can classify passenger survival with 92% 

accuracy, and has an accuracy of ~82% (0.82). The two runner 

up ones SVM and Random forests also performed admirably 

with an AUC of 0.88 for SVM and 0.87 for Random forests, 

also with an accuracy of ~82% (0.82). Therefore for this 

challenge k-NN with cross validation is the best. 

 

What surprised us was that k-NN in it’s simple non cross 

validated form while having an AUC of just 0.80 was still able 

to be almost on par in terms of precision, recall, and accuracy 

with all the other supervised models that were not linear 

regression with an accuracy of ~82% (0.82). This means that 

the more complex a model is doesn’t mean that it would 

perform better significantly.  

 

In terms of real world applications, this does show that even 

simple machine learning models can be ‘good enough’ in terms 

of performance, and that we can chalk up most of the 

performance of the models that we observed really just comes 

down to the quality of the training data preprocessing, as most 

of the supervised models hovered around an 82% (0.82) 

accuracy. 

A. Future Work 

With our experiment the k-means on part of the dataset, when 

you let the unsupervised model run loose, it does do better than 

the average 62% baseline with an accuracy of 69% (0.69) for 

k = 2 in binary classification. Because k-means managed to 

classify the two classes better than the baseline which holds 

exciting prospects for the future. If we were to do this project 

again this avenue with some more experiments could hold 

promise in binary classification, and potentially if enough time 

and effort is dedicated could have a unsupervised model 

perform on par or surpass supervised learning. 
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